High-Order Flux Reconstruction Schemes

نویسندگان

  • F. D. Witherden
  • P. E. Vincent
  • A. Jameson
چکیده

There is an increasing desire among industrial practitioners of computational fluid dynamics to undertake high-fidelity scale-resolving simulations of unsteady flows within the vicinity of complex geometries. Such simulations require numerical methods that can operate on unstructured meshes with low numerical dissipation. The flux reconstruction (FR) approach describes one such family of numerical methods, which includes a particular type of collocation-based nodal discontinuous Galerkin method, and spectral difference methods, as special cases. In this chapter we describe the current state-of-the-art surrounding research into FR methods. To begin, FR is described in one dimension for both advection and advection–diffusion problems. This is followed by a description of its extension to multidimensional tensor product and simplex elements. Stability and accuracy issues are then discussed, including an overview of energystability proofs, von Neumann analysis results, and stability characteristics when the flux function of the governing system is nonlinear. Finally, implementation aspects Handbook of Numerical Analysis, Vol. 17. http://dx.doi.org/10.1016/bs.hna.2016.09.010 © 2016 Elsevier B.V. All rights reserved. 227 are outlined in the context of modern hardware platforms, and three example applications of FR are presented, demonstrating the potential utility of FR schemes for scale resolving simulation of unsteady flow problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws

This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...

متن کامل

Simulation of the Taylor–Green Vortex Using High-Order Flux Reconstruction Schemes

In this paper, the ability of high-order flux reconstruction numerical schemes to perform accurate and stable computations of compressible turbulent flows on coarsemeshes is investigated. Twonew flux reconstruction schemes, which are optimized for wave dissipation and dispersion properties, are compared to the nodal discontinuous Galerkin and spectral difference methods recovered via the energy...

متن کامل

A New Class of High-Order Energy Stable Flux Reconstruction Schemes

The flux reconstruction approach to high-order methods is robust, efficient, simple to implement, and allows various high-order schemes, such as the nodal discontinuous Galerkin method and the spectral difference method, to be cast within a single unifying framework. Utilizing a flux reconstruction formulation, it has been proved (for onedimensional linear advection) that the spectral differenc...

متن کامل

Application of High-Order Energy Stable Flux Reconstruction Schemes to the Euler Equations

The authors recently identified an infinite range of high-order energy stable flux reconstruction (FR) schemes in 1D and on triangular elements in 2D. The new flux reconstruction schemes are linearly stable for all orders of accuracy in a norm of Sobolev type. They are parameterized by a single scalar quantity, which if chosen judiciously leads to the recovery of various well known high-order m...

متن کامل

Insights from von Neumann analysis of high-order flux reconstruction schemes

The flux reconstruction (FR) approach unifies various high-order schemes, including collocation based nodal discontinuous Galerkin methods, and all spectral difference methods (at least for a linear flux function), within a single framework. Recently, an infinite number of linearly stable FR schemes were identified, henceforth referred to as Vincent–Castonguay– Jameson–Huynh (VCJH) schemes. Ide...

متن کامل

Connections between the discontinuous Galerkin method and high-order flux reconstruction schemes

With high-order methods becoming more widely adopted throughout the field of computational fluid dynamics, the development of new computationally efficient algorithms has increased tremendously in recent years. The flux reconstruction approach allows various well-known high order schemes to be cast within a single unifying framework. Whilst a connection between flux reconstruction and the disco...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016